Last updated: April 03, 2023
This page contains semiconductor trade data for use in forecasting the following questions on INFER:
Data is updated automatically at regular intervals and is sourced from COMTRADE.
Important Note: The annual data for US exports to China is a summation of monthly data, so data for the current year is to-date and is not complete.
Click the “Code” buttons to see the R code used on this page. An R Markdown file of this page is available here for anyone who wishes to download and run or modify it themselves.
library(jsonlite)
library(tidyverse)
library(lubridate)
library(scales)
library(zoo)
library(tidyr)
library(kableExtra)
#
#
#
#US exports of SME to China
#
#
#
us_sme_china <- read.csv(url("https://comtrade.un.org/api/get?type=C&freq=M&px=HS&ps=all&r=842&p=156&rg=2&cc=8486%2C903082%2C903141%2C854311%2C901041&fmt=csv"))
us_sme_china <- select(us_sme_china,"Period","Trade.Value..US..")
us_sme_china <- cbind("Date" = as.Date(parse_date_time(us_sme_china$Period,"ym")),us_sme_china)
us_sme_china <- us_sme_china %>% group_by(Date) %>% summarise(Value = sum(Trade.Value..US..)) %>% ungroup()
us_sme_china <- transform(us_sme_china,Rolling.Sum = rollapply(Value,12,sum, fill = NA, align = "left"))
us_sme_china <- transform(us_sme_china,Rolling.Average = rollapply(as.numeric(Value),6,mean, fill = NA, align = "right"))
us_sme_china_annual <- us_sme_china
us_sme_china_annual$DateFloor <- floor_date(us_sme_china_annual$Date,"year")
us_sme_china_annual <- us_sme_china_annual %>% group_by(DateFloor) %>% mutate(Annual.Sum = sum(Value)) %>% ungroup()
us_sme_china_annual$Annual.Sum[duplicated(us_sme_china_annual$Annual.Sum)] <- NA
us_sme_china_annual <- select(us_sme_china_annual,"Date","Rolling.Sum","Annual.Sum")
us_sme_china_annual_long <- gather(us_sme_china_annual,Type,Sum,Rolling.Sum,Annual.Sum)
us_sme_china_annual_long <- na.omit(us_sme_china_annual_long)
us_sme_china <- select(us_sme_china,"Date","Value","Rolling.Average")
us_sme_china_long <- gather(us_sme_china,Type,Result,Value,Rolling.Average)
us_sme_china_monthly_plot <- ggplot(us_sme_china_long, aes(Date,Result)) +
geom_line(size=0.75, aes(color=Type)) +
labs(x="Month", y="Export Value (Millions of Dollars)", title="US to China Monthly Semiconductor Equipment Exports",color = "Legend") +
scale_color_hue(labels = c("6 Month Rolling Average", "Monthly Value")) +
scale_y_continuous(labels = label_dollar(scale = 1e-6), limits = c(0, NA), expand = expansion(mult = c(0, 0.2))) +
scale_x_date(breaks="1 year",labels = date_format("%b/%y")) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
theme(panel.grid.major = element_line(colour = "grey"), panel.grid.minor = element_line(colour = "gray90")) +
theme(legend.position = "top") +
theme(legend.title = element_blank())
#Expand limits: https://stackoverflow.com/questions/27028825/ggplot2-force-y-axis-to-start-at-origin-and-float-y-axis-upper-limit/59056123#59056123
us_sme_china_annual_plot <- ggplot(us_sme_china_annual_long, aes(Date,Sum)) +
geom_line(size=0.75, aes(color=Type)) +
geom_point(data = us_sme_china_annual_long[us_sme_china_annual_long$Type == "Annual.Sum",], color = "red", size=2) +
labs(x="Year", y="Export Value (Billions of Dollars)", title="US to China Annual Semiconductor Equipment Exports", color = "Legend") +
scale_color_hue(labels = c("Annual", "12-Month Rolling Sum")) +
scale_y_continuous(labels = label_dollar(scale = 1e-9), limits = c(0, NA), expand = expansion(mult = c(0, 0.2))) +
scale_x_date(breaks="1 year",labels = date_format("%Y")) +
expand_limits(y = c(0,NA)) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
theme(panel.grid.major = element_line(colour = "grey"), panel.grid.minor = element_line(colour = "gray90")) +
theme(legend.position = "top") +
theme(legend.title = element_blank())
us_sme_china_combined <- us_sme_china
us_sme_china_combined <- transform(us_sme_china_combined,Rolling.Sum = rollapply(Value,12,sum, fill = NA, align = "right"))
us_sme_china_combined$DateCeiling <- floor_date(rollback(ceiling_date(us_sme_china_combined$Date,"year")),"month")
us_sme_china_combined <- us_sme_china_combined %>% group_by(DateCeiling) %>% mutate(Annual.Sum = sum(Value)) %>% ungroup()
us_sme_china_combined <- us_sme_china_combined[,c("Date","Value","Rolling.Average","Rolling.Sum","Annual.Sum")]
us_sme_china_combined[,2:5] <- us_sme_china_combined[,2:5]/1000000
us_sme_china_combined <- us_sme_china_combined %>% arrange(desc(Date))
#number formatting discussion: https://stackoverflow.com/questions/3443687/formatting-decimal-places-in-r
us_sme_china_combined_formatted <- us_sme_china_combined %>% mutate_if(is.numeric,round,digits=0) %>% mutate_if(is.numeric,format,nsmall=0,big.mark=",")
us_sme_china_monthly_table <- kbl(us_sme_china_combined_formatted,col.names = c("Date","Monthly Export","6 Month Rolling Average","Rolling Annual Total","Total by Year")) %>%
add_header_above(c(" " = 1,"Monthly Values (Millions of $)" = 2,"Annual Values (Millions of $)" = 2)) %>%
kable_minimal(full_width = F) %>%
column_spec(1,width_min = "6em") %>%
scroll_box(width = "100%", height = "500px")
#
#
#
#US exports of chips to China
#
#
#
us_chips_china <- read.csv(url("https://comtrade.un.org/api/get?type=C&freq=M&px=HS&ps=all&r=842&p=156&rg=2&cc=8542&fmt=csv"))
us_chips_china <- select(us_chips_china,"Period","Trade.Value..US..")
us_chips_china <- cbind("Date" = as.Date(parse_date_time(us_chips_china$Period,"ym")),us_chips_china)
us_chips_china <- us_chips_china %>% group_by(Date) %>% summarise(Value = sum(Trade.Value..US..)) %>% ungroup()
us_chips_china <- transform(us_chips_china,Rolling.Sum = rollapply(Value,12,sum, fill = NA, align = "left"))
us_chips_china <- transform(us_chips_china,Rolling.Average = rollapply(as.numeric(Value),6,mean, fill = NA, align = "right"))
us_chips_china_annual <- us_chips_china
us_chips_china_annual$DateFloor <- floor_date(us_chips_china_annual$Date,"year")
us_chips_china_annual <- us_chips_china_annual %>% group_by(DateFloor) %>% mutate(Annual.Sum = sum(Value)) %>% ungroup()
us_chips_china_annual$Annual.Sum[duplicated(us_chips_china_annual$Annual.Sum)] <- NA
us_chips_china_annual <- select(us_chips_china_annual,"Date","Rolling.Sum","Annual.Sum")
us_chips_china_annual_long <- gather(us_chips_china_annual,Type,Sum,Rolling.Sum,Annual.Sum)
us_chips_china_annual_long <- na.omit(us_chips_china_annual_long)
us_chips_china <- select(us_chips_china,"Date","Value","Rolling.Average")
us_chips_china_long <- gather(us_chips_china,Type,Result,Value,Rolling.Average)
us_chips_china_monthly_plot <- ggplot(us_chips_china_long, aes(Date,Result)) +
geom_line(size=0.75, aes(color=Type)) +
labs(x="Month", y="Export Value (Millions of Dollars)", title="US to China Monthly Semiconductor Chips Exports",color = "Legend") +
scale_color_hue(labels = c("6 Month Rolling Average", "Monthly Value")) +
scale_y_continuous(labels = label_dollar(scale = 1e-6), limits = c(0, NA), expand = expansion(mult = c(0, 0.2))) +
scale_x_date(breaks="1 year",labels = date_format("%b/%y")) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
theme(panel.grid.major = element_line(colour = "grey"), panel.grid.minor = element_line(colour = "gray90")) +
theme(legend.position = "top") +
theme(legend.title = element_blank())
#Expand limits: https://stackoverflow.com/questions/27028825/ggplot2-force-y-axis-to-start-at-origin-and-float-y-axis-upper-limit/59056123#59056123
us_chips_china_annual_plot <- ggplot(us_chips_china_annual_long, aes(Date,Sum)) +
geom_line(size=0.75, aes(color=Type)) +
geom_point(data = us_chips_china_annual_long[us_chips_china_annual_long$Type == "Annual.Sum",], color = "red", size=2) +
labs(x="Year", y="Export Value (Billions of Dollars)", title="US to China Annual Semiconductor Chips Exports", color = "Legend") +
scale_color_hue(labels = c("Annual", "12-Month Rolling Sum")) +
scale_y_continuous(labels = label_dollar(scale = 1e-9), limits = c(0, NA), expand = expansion(mult = c(0, 0.2))) +
scale_x_date(breaks="1 year",labels = date_format("%Y")) +
expand_limits(y = c(0,NA)) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
theme(panel.grid.major = element_line(colour = "grey"), panel.grid.minor = element_line(colour = "gray90")) +
theme(legend.position = "top") +
theme(legend.title = element_blank())
us_chips_china_combined <- us_chips_china
us_chips_china_combined <- transform(us_chips_china_combined,Rolling.Sum = rollapply(Value,12,sum, fill = NA, align = "right"))
us_chips_china_combined$DateCeiling <- floor_date(rollback(ceiling_date(us_chips_china_combined$Date,"year")),"month")
us_chips_china_combined <- us_chips_china_combined %>% group_by(DateCeiling) %>% mutate(Annual.Sum = sum(Value)) %>% ungroup()
us_chips_china_combined <- us_chips_china_combined[,c("Date","Value","Rolling.Average","Rolling.Sum","Annual.Sum")]
us_chips_china_combined[,2:5] <- us_chips_china_combined[,2:5]/1000000
us_chips_china_combined <- us_chips_china_combined %>% arrange(desc(Date))
#number formatting discussion: https://stackoverflow.com/questions/3443687/formatting-decimal-places-in-r
us_chips_china_combined_formatted <- us_chips_china_combined %>% mutate_if(is.numeric,round,digits=0) %>% mutate_if(is.numeric,format,nsmall=0,big.mark=",")
us_chips_china_monthly_table <- kbl(us_chips_china_combined_formatted,col.names = c("Date","Monthly Export","6 Month Rolling Average","Rolling Annual Total","Total by Year")) %>%
add_header_above(c(" " = 1,"Monthly Values (Millions of $)" = 2,"Annual Values (Millions of $)" = 2)) %>%
kable_minimal(full_width = F) %>%
column_spec(1,width_min = "6em") %>%
scroll_box(width = "100%", height = "500px")
#
#
#
#china chips imports total
#
#
#
china_chip_imports <- read.csv(url("https://comtrade.un.org/api/get?max=100000&type=C&freq=A&px=HS&ps=all&r=156&p=0&rg=1&cc=8542&fmt=csv"))
china_chip_imports <- select(china_chip_imports,"Period","Trade.Value..US..")
china_chip_imports <- cbind("Date" = as.Date(parse_date_time(china_chip_imports$Period,"y")),china_chip_imports)
china_chip_imports <- china_chip_imports %>% group_by(Date) %>% summarise(Value = sum(Trade.Value..US..)) %>% ungroup()
china_chip_imports_annual_plot <- ggplot(china_chip_imports, aes(Date,Value)) +
geom_line(size=0.75, color = "red") +
geom_point(color = "red", size=2) +
labs(x="Year", y="Import Value (Billions of Dollars)", title="China Annual Semiconductor Chip Imports") +
scale_y_continuous(labels = label_dollar(scale = 1e-9), limits = c(0, NA), expand = expansion(mult = c(0, 0.2))) +
scale_x_date(breaks="1 year",labels = date_format("%Y")) +
expand_limits(y = c(0,NA)) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
theme(panel.grid.major = element_line(colour = "grey")) +
theme(legend.position = "top") +
theme(legend.title = element_blank())
china_chip_imports_formatted <- china_chip_imports
china_chip_imports_formatted$Date <- format(as.Date(china_chip_imports_formatted$Date),"%Y")
china_chip_imports_formatted[,2] <- china_chip_imports_formatted[,2]/1000000
china_chip_imports_formatted <- china_chip_imports_formatted %>% arrange(desc(Date))
#number formatting discussion: https://stackoverflow.com/questions/3443687/formatting-decimal-places-in-r
china_chip_imports_formatted <- china_chip_imports_formatted %>% mutate_if(is.numeric,round,digits=0) %>% mutate_if(is.numeric,format,nsmall=0,big.mark=",")
china_chip_imports_table <- kbl(china_chip_imports_formatted,col.names = c("Date","Semiconductor Imports (Millions of $)")) %>%
kable_minimal(full_width = F) %>%
column_spec(1,width_min = "6em") %>%
scroll_box(width = "100%", height = "500px")
#
#
#
#china sme imports total
#
#
#
china_sme_imports <- read.csv(url("https://comtrade.un.org/api/get?max=100000&type=C&freq=A&px=HS&ps=all&r=156&p=0&rg=1&cc=8486%2C903082%2C903141%2C854311%2C901041&fmt=csv"))
china_sme_imports <- select(china_sme_imports,"Period","Trade.Value..US..")
china_sme_imports <- cbind("Date" = as.Date(parse_date_time(china_sme_imports$Period,"y")),china_sme_imports)
china_sme_imports <- china_sme_imports %>% group_by(Date) %>% summarise(Value = sum(Trade.Value..US..)) %>% ungroup()
china_sme_imports_annual_plot <- ggplot(china_sme_imports, aes(Date,Value)) +
geom_line(size=0.75, color = "red") +
geom_point(color = "red", size=2) +
labs(x="Year", y="Import Value (Billions of Dollars)", title="China Annual Semiconductor Manufacturing Equipment Imports") +
scale_y_continuous(labels = label_dollar(scale = 1e-9), limits = c(0, NA), expand = expansion(mult = c(0, 0.2))) +
scale_x_date(breaks="1 year",labels = date_format("%Y")) +
expand_limits(y = c(0,NA)) +
theme_classic() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
theme(panel.grid.major = element_line(colour = "grey")) +
theme(legend.position = "top") +
theme(legend.title = element_blank())
china_sme_imports_formatted <- china_sme_imports
china_sme_imports_formatted$Date <- format(as.Date(china_sme_imports_formatted$Date),"%Y")
china_sme_imports_formatted[,2] <- china_sme_imports_formatted[,2]/1000000
china_sme_imports_formatted <- china_sme_imports_formatted %>% arrange(desc(Date))
#number formatting discussion: https://stackoverflow.com/questions/3443687/formatting-decimal-places-in-r
china_sme_imports_formatted <- china_sme_imports_formatted %>% mutate_if(is.numeric,round,digits=0) %>% mutate_if(is.numeric,format,nsmall=0,big.mark=",")
china_sme_imports_table <- kbl(china_sme_imports_formatted,col.names = c("Date","Semiconductor Equipment Imports (Millions of $)")) %>%
kable_minimal(full_width = F) %>%
column_spec(1,width_min = "6em") %>%
scroll_box(width = "100%", height = "500px")
us_sme_china_monthly_plot
us_sme_china_annual_plot
us_sme_china_monthly_table
Date | Monthly Export | 6 Month Rolling Average | Rolling Annual Total | Total by Year |
---|---|---|---|---|
2022-12-01 | 364 | 437 | 5,866 | 5,866 |
2022-11-01 | 288 | 449 | 6,107 | 5,866 |
2022-10-01 | 439 | 494 | 6,385 | 5,866 |
2022-09-01 | 466 | 520 | 6,670 | 5,866 |
2022-08-01 | 467 | 549 | 6,727 | 5,866 |
2022-07-01 | 598 | 553 | 6,811 | 5,866 |
2022-06-01 | 438 | 541 | 7,032 | 5,866 |
2022-05-01 | 554 | 569 | 7,197 | 5,866 |
2022-04-01 | 600 | 570 | 7,266 | 5,866 |
2022-03-01 | 635 | 591 | 7,290 | 5,866 |
2022-02-01 | 494 | 573 | 7,330 | 5,866 |
2022-01-01 | 524 | 582 | 7,181 | 5,866 |
2021-12-01 | 605 | 631 | 7,254 | 7,254 |
2021-11-01 | 565 | 631 | 7,151 | 7,254 |
2021-10-01 | 725 | 641 | 7,036 | 7,254 |
2021-09-01 | 522 | 624 | 6,776 | 7,254 |
2021-08-01 | 552 | 649 | 6,895 | 7,254 |
2021-07-01 | 819 | 615 | 6,862 | 7,254 |
2021-06-01 | 603 | 578 | 6,517 | 7,254 |
2021-05-01 | 623 | 561 | 6,383 | 7,254 |
2021-04-01 | 624 | 532 | 6,202 | 7,254 |
2021-03-01 | 675 | 506 | 5,957 | 7,254 |
2021-02-01 | 345 | 500 | 5,794 | 7,254 |
2021-01-01 | 597 | 529 | 5,714 | 7,254 |
2020-12-01 | 502 | 508 | 5,466 | 5,466 |
2020-11-01 | 450 | 503 | 5,499 | 5,466 |
2020-10-01 | 465 | 501 | 5,346 | 5,466 |
2020-09-01 | 641 | 487 | 5,239 | 5,466 |
2020-08-01 | 519 | 466 | 4,863 | 5,466 |
2020-07-01 | 473 | 423 | 4,695 | 5,466 |
2020-06-01 | 469 | 403 | 4,559 | 5,466 |
2020-05-01 | 442 | 414 | 4,505 | 5,466 |
2020-04-01 | 379 | 390 | 4,496 | 5,466 |
2020-03-01 | 512 | 386 | 4,557 | 5,466 |
2020-02-01 | 265 | 345 | 4,349 | 5,466 |
2020-01-01 | 350 | 359 | 4,248 | 5,466 |
2019-12-01 | 535 | 357 | 4,092 | 4,092 |
2019-11-01 | 297 | 337 | 3,877 | 4,092 |
2019-10-01 | 357 | 360 | 3,729 | 4,092 |
2019-09-01 | 266 | 374 | 3,625 | 4,092 |
2019-08-01 | 350 | 380 | 3,655 | 4,092 |
2019-07-01 | 338 | 349 | 3,636 | 4,092 |
2019-06-01 | 415 | 325 | 3,869 | 4,092 |
2019-05-01 | 432 | 309 | 3,961 | 4,092 |
2019-04-01 | 441 | 262 | 3,962 | 4,092 |
2019-03-01 | 303 | 230 | 3,954 | 4,092 |
2019-02-01 | 164 | 229 | 4,010 | 4,092 |
2019-01-01 | 194 | 257 | 4,081 | 4,092 |
2018-12-01 | 320 | 320 | 4,115 | 4,115 |
2018-11-01 | 149 | 351 | 4,224 | 4,115 |
2018-10-01 | 253 | 399 | 4,237 | 4,115 |
2018-09-01 | 296 | 429 | 4,220 | 4,115 |
2018-08-01 | 330 | 439 | 4,099 | 4,115 |
2018-07-01 | 572 | 423 | 3,910 | 4,115 |
2018-06-01 | 506 | 366 | 3,513 | 4,115 |
2018-05-01 | 433 | 353 | 3,259 | 4,115 |
2018-04-01 | 434 | 308 | 3,097 | 4,115 |
2018-03-01 | 359 | 275 | 2,985 | 4,115 |
2018-02-01 | 235 | 244 | 2,890 | 4,115 |
2018-01-01 | 228 | 228 | 2,888 | 4,115 |
2017-12-01 | 428 | 220 | 2,888 | 2,888 |
2017-11-01 | 162 | 190 | 2,621 | 2,888 |
2017-10-01 | 236 | 209 | 2,588 | 2,888 |
2017-09-01 | 174 | 223 | 2,513 | 2,888 |
2017-08-01 | 142 | 238 | 2,475 | 2,888 |
2017-07-01 | 175 | 253 | 2,519 | 2,888 |
2017-06-01 | 253 | 262 | 2,535 | 2,888 |
2017-05-01 | 271 | 246 | 2,450 | 2,888 |
2017-04-01 | 321 | 223 | 2,404 | 2,888 |
2017-03-01 | 264 | 196 | 2,492 | 2,888 |
2017-02-01 | 234 | 175 | 2,626 | 2,888 |
2017-01-01 | 227 | 167 | 2,506 | 2,888 |
2016-12-01 | 161 | 161 | 2,428 | 2,428 |
2016-11-01 | 129 | 162 | 2,418 | 2,428 |
2016-10-01 | 162 | 178 | 2,351 | 2,428 |
2016-09-01 | 136 | 219 | 2,294 | 2,428 |
2016-08-01 | 185 | 263 | 2,379 | 2,428 |
2016-07-01 | 192 | 251 | 2,521 | 2,428 |
2016-06-01 | 168 | 244 | 2,524 | 2,428 |
2016-05-01 | 225 | 241 | 2,490 | 2,428 |
2016-04-01 | 409 | 214 | 2,419 | 2,428 |
2016-03-01 | 398 | 163 | 2,179 | 2,428 |
2016-02-01 | 114 | 134 | 2,008 | 2,428 |
2016-01-01 | 150 | 169 | 2,084 | 2,428 |
2015-12-01 | 151 | 177 | 2,060 | 2,060 |
2015-11-01 | 62 | 174 | 2,001 | 2,060 |
2015-10-01 | 105 | 189 | 2,003 | 2,060 |
2015-09-01 | 221 | 200 | 2,192 | 2,060 |
2015-08-01 | 328 | 201 | 2,089 | 2,060 |
2015-07-01 | 195 | 178 | 1,834 | 2,060 |
2015-06-01 | 134 | 167 | 1,742 | 2,060 |
2015-05-01 | 154 | 160 | 1,738 | 2,060 |
2015-04-01 | 169 | 145 | 1,662 | 2,060 |
2015-03-01 | 228 | 165 | 1,586 | 2,060 |
2015-02-01 | 190 | 147 | 1,511 | 2,060 |
2015-01-01 | 126 | 128 | 1,468 | 2,060 |
2014-12-01 | 92 | 124 | 1,525 | 1,525 |
2014-11-01 | 64 | 130 | 1,800 | 1,525 |
2014-10-01 | 294 | 132 | 1,879 | 1,525 |
2014-09-01 | 118 | 99 | 1,660 | 1,525 |
2014-08-01 | 73 | 105 | 1,599 | 1,525 |
2014-07-01 | 103 | 117 | 1,644 | 1,525 |
2014-06-01 | 130 | 130 | 1,623 | 1,525 |
2014-05-01 | 77 | 170 | 1,579 | 1,525 |
2014-04-01 | 92 | 181 | 1,575 | 1,525 |
2014-03-01 | 153 | 178 | 1,561 | 1,525 |
2014-02-01 | 147 | 162 | 1,514 | 1,525 |
2014-01-01 | 182 | 157 | 1,407 | 1,525 |
2013-12-01 | 367 | 140 | 1,304 | 1,304 |
2013-11-01 | 143 | 93 | 992 | 1,304 |
2013-10-01 | 74 | 82 | 881 | 1,304 |
2013-09-01 | 57 | 82 | 886 | 1,304 |
2013-08-01 | 117 | 91 | 923 | 1,304 |
2013-07-01 | 82 | 78 | 947 | 1,304 |
2013-06-01 | 85 | 77 | 1,002 | 1,304 |
2013-05-01 | 74 | 72 | 1,037 | 1,304 |
2013-04-01 | 78 | 65 | 1,018 | 1,304 |
2013-03-01 | 106 | 65 | 1,032 | 1,304 |
2013-02-01 | 39 | 63 | 997 | 1,304 |
2013-01-01 | 79 | 80 | 1,034 | 1,304 |
2012-12-01 | 55 | 90 | 1,040 | 1,040 |
2012-11-01 | 32 | 101 | 1,108 | 1,040 |
2012-10-01 | 80 | 105 | 1,187 | 1,040 |
2012-09-01 | 94 | 107 | 1,221 | 1,040 |
2012-08-01 | 141 | 103 | 1,250 | 1,040 |
2012-07-01 | 138 | 92 | 1,255 | 1,040 |
2012-06-01 | 120 | 83 | 1,237 | 1,040 |
2012-05-01 | 54 | 84 | 1,270 | 1,040 |
2012-04-01 | 93 | 93 | 1,372 | 1,040 |
2012-03-01 | 71 | 97 | 1,457 | 1,040 |
2012-02-01 | 76 | 105 | 1,588 | 1,040 |
2012-01-01 | 86 | 117 | 1,611 | 1,040 |
2011-12-01 | 123 | 123 | 1,677 | 1,677 |
2011-11-01 | 111 | 128 | 1,974 | 1,677 |
2011-10-01 | 113 | 135 | 2,029 | 1,677 |
2011-09-01 | 124 | 146 | 2,114 | 1,677 |
2011-08-01 | 145 | 159 | 2,200 | 1,677 |
2011-07-01 | 120 | 151 | 2,245 | 1,677 |
2011-06-01 | 153 | 157 | 2,330 | 1,677 |
2011-05-01 | 157 | 201 | 2,331 | 1,677 |
2011-04-01 | 178 | 203 | 2,319 | 1,677 |
2011-03-01 | 202 | 206 | 2,242 | 1,677 |
2011-02-01 | 98 | 208 | 2,164 | 1,677 |
2011-01-01 | 152 | 223 | 2,146 | 1,677 |
2010-12-01 | 420 | 232 | 2,094 | 2,094 |
2010-11-01 | 167 | 187 | NA | 2,094 |
2010-10-01 | 198 | 184 | NA | 2,094 |
2010-09-01 | 210 | 167 | NA | 2,094 |
2010-08-01 | 190 | 153 | NA | 2,094 |
2010-07-01 | 205 | 135 | NA | 2,094 |
2010-06-01 | 154 | 117 | NA | 2,094 |
2010-05-01 | 145 | NA | NA | 2,094 |
2010-04-01 | 101 | NA | NA | 2,094 |
2010-03-01 | 124 | NA | NA | 2,094 |
2010-02-01 | 80 | NA | NA | 2,094 |
2010-01-01 | 100 | NA | NA | 2,094 |
us_chips_china_monthly_plot
us_chips_china_annual_plot
us_chips_china_monthly_table
Date | Monthly Export | 6 Month Rolling Average | Rolling Annual Total | Total by Year |
---|---|---|---|---|
2022-12-01 | 586 | 749 | 9,418 | 9,418 |
2022-11-01 | 784 | 801 | 9,729 | 9,418 |
2022-10-01 | 784 | 813 | 9,906 | 9,418 |
2022-09-01 | 879 | 808 | 9,993 | 9,418 |
2022-08-01 | 768 | 804 | 10,055 | 9,418 |
2022-07-01 | 695 | 791 | 10,179 | 9,418 |
2022-06-01 | 894 | 820 | 10,573 | 9,418 |
2022-05-01 | 857 | 821 | 11,033 | 9,418 |
2022-04-01 | 754 | 838 | 11,410 | 9,418 |
2022-03-01 | 857 | 858 | 11,723 | 9,418 |
2022-02-01 | 687 | 871 | 12,047 | 9,418 |
2022-01-01 | 871 | 906 | 12,282 | 9,418 |
2021-12-01 | 897 | 942 | 12,265 | 12,265 |
2021-11-01 | 961 | 1,018 | 12,346 | 12,265 |
2021-10-01 | 871 | 1,063 | 12,256 | 12,265 |
2021-09-01 | 941 | 1,096 | 12,266 | 12,265 |
2021-08-01 | 893 | 1,136 | 12,131 | 12,265 |
2021-07-01 | 1,088 | 1,141 | 12,046 | 12,265 |
2021-06-01 | 1,354 | 1,102 | 11,895 | 12,265 |
2021-05-01 | 1,234 | 1,040 | 11,371 | 12,265 |
2021-04-01 | 1,068 | 979 | 11,029 | 12,265 |
2021-03-01 | 1,181 | 948 | 10,845 | 12,265 |
2021-02-01 | 923 | 886 | 10,500 | 12,265 |
2021-01-01 | 855 | 866 | 10,311 | 12,265 |
2020-12-01 | 978 | 880 | 10,162 | 10,162 |
2020-11-01 | 872 | 856 | 9,929 | 10,162 |
2020-10-01 | 881 | 859 | 9,752 | 10,162 |
2020-09-01 | 806 | 859 | 9,571 | 10,162 |
2020-08-01 | 808 | 864 | 9,419 | 10,162 |
2020-07-01 | 937 | 852 | 9,302 | 10,162 |
2020-06-01 | 830 | 813 | 8,895 | 10,162 |
2020-05-01 | 892 | 799 | 8,674 | 10,162 |
2020-04-01 | 884 | 766 | 8,421 | 10,162 |
2020-03-01 | 836 | 736 | 8,234 | 10,162 |
2020-02-01 | 733 | 705 | 8,186 | 10,162 |
2020-01-01 | 706 | 698 | 8,295 | 10,162 |
2019-12-01 | 745 | 669 | 8,149 | 8,149 |
2019-11-01 | 695 | 646 | 8,067 | 8,149 |
2019-10-01 | 700 | 637 | 8,005 | 8,149 |
2019-09-01 | 654 | 637 | 7,919 | 8,149 |
2019-08-01 | 691 | 659 | 7,776 | 8,149 |
2019-07-01 | 531 | 684 | 7,656 | 8,149 |
2019-06-01 | 608 | 689 | 7,541 | 8,149 |
2019-05-01 | 639 | 698 | 7,371 | 8,149 |
2019-04-01 | 697 | 697 | 7,150 | 8,149 |
2019-03-01 | 788 | 683 | 6,885 | 8,149 |
2019-02-01 | 842 | 637 | 6,579 | 8,149 |
2019-01-01 | 560 | 592 | 6,151 | 8,149 |
2018-12-01 | 663 | 568 | 6,097 | 6,097 |
2018-11-01 | 632 | 530 | 5,862 | 6,097 |
2018-10-01 | 614 | 495 | 5,734 | 6,097 |
2018-09-01 | 511 | 464 | 5,666 | 6,097 |
2018-08-01 | 571 | 459 | 5,716 | 6,097 |
2018-07-01 | 415 | 433 | 5,620 | 6,097 |
2018-06-01 | 438 | 448 | 5,569 | 6,097 |
2018-05-01 | 419 | 447 | 5,559 | 6,097 |
2018-04-01 | 431 | 461 | 5,527 | 6,097 |
2018-03-01 | 482 | 480 | 5,462 | 6,097 |
2018-02-01 | 415 | 493 | 5,370 | 6,097 |
2018-01-01 | 506 | 503 | 5,363 | 6,097 |
2017-12-01 | 428 | 480 | 5,286 | 5,286 |
2017-11-01 | 505 | 480 | 5,362 | 5,286 |
2017-10-01 | 546 | 460 | 5,263 | 5,286 |
2017-09-01 | 561 | 430 | 5,220 | 5,286 |
2017-08-01 | 475 | 402 | 5,116 | 5,286 |
2017-07-01 | 364 | 391 | 5,114 | 5,286 |
2017-06-01 | 428 | 401 | 5,173 | 5,286 |
2017-05-01 | 387 | 414 | 5,129 | 5,286 |
2017-04-01 | 366 | 417 | 5,237 | 5,286 |
2017-03-01 | 390 | 440 | 5,262 | 5,286 |
2017-02-01 | 408 | 451 | 5,384 | 5,286 |
2017-01-01 | 429 | 462 | 5,280 | 5,286 |
2016-12-01 | 504 | 461 | 5,179 | 5,179 |
2016-11-01 | 405 | 441 | 5,137 | 5,179 |
2016-10-01 | 502 | 456 | 5,177 | 5,179 |
2016-09-01 | 457 | 437 | 5,083 | 5,179 |
2016-08-01 | 473 | 447 | 5,047 | 5,179 |
2016-07-01 | 424 | 418 | 4,994 | 5,179 |
2016-06-01 | 384 | 402 | 5,074 | 5,179 |
2016-05-01 | 496 | 415 | 5,094 | 5,179 |
2016-04-01 | 390 | 407 | 4,955 | 5,179 |
2016-03-01 | 513 | 410 | 4,975 | 5,179 |
2016-02-01 | 304 | 395 | 4,867 | 5,179 |
2016-01-01 | 328 | 414 | 4,930 | 5,179 |
2015-12-01 | 461 | 443 | 5,006 | 5,006 |
2015-11-01 | 445 | 434 | 5,034 | 5,006 |
2015-10-01 | 409 | 419 | 4,973 | 5,006 |
2015-09-01 | 421 | 419 | 4,970 | 5,006 |
2015-08-01 | 420 | 417 | 4,960 | 5,006 |
2015-07-01 | 503 | 408 | 4,963 | 5,006 |
2015-06-01 | 404 | 391 | 4,814 | 5,006 |
2015-05-01 | 357 | 405 | 4,792 | 5,006 |
2015-04-01 | 410 | 410 | 4,780 | 5,006 |
2015-03-01 | 405 | 409 | 4,716 | 5,006 |
2015-02-01 | 366 | 410 | 4,603 | 5,006 |
2015-01-01 | 404 | 419 | 4,575 | 5,006 |
2014-12-01 | 489 | 411 | 4,476 | 4,476 |
2014-11-01 | 384 | 393 | 4,309 | 4,476 |
2014-10-01 | 405 | 387 | 4,236 | 4,476 |
2014-09-01 | 412 | 377 | 4,294 | 4,476 |
2014-08-01 | 423 | 357 | 4,182 | 4,476 |
2014-07-01 | 355 | 343 | 4,101 | 4,476 |
2014-06-01 | 382 | 335 | 4,091 | 4,476 |
2014-05-01 | 345 | 325 | 4,022 | 4,476 |
2014-04-01 | 346 | 319 | 4,025 | 4,476 |
2014-03-01 | 292 | 339 | 3,954 | 4,476 |
2014-02-01 | 338 | 340 | 3,999 | 4,476 |
2014-01-01 | 306 | 341 | 3,926 | 4,476 |
2013-12-01 | 322 | 347 | 3,885 | 3,885 |
2013-11-01 | 311 | 346 | 3,835 | 3,885 |
2013-10-01 | 463 | 352 | 3,763 | 3,885 |
2013-09-01 | 299 | 320 | 3,559 | 3,885 |
2013-08-01 | 342 | 327 | 3,520 | 3,885 |
2013-07-01 | 345 | 314 | 3,443 | 3,885 |
2013-06-01 | 313 | 300 | 3,357 | 3,885 |
2013-05-01 | 347 | 294 | 3,372 | 3,885 |
2013-04-01 | 275 | 276 | 3,346 | 3,885 |
2013-03-01 | 337 | 273 | 3,303 | 3,885 |
2013-02-01 | 265 | 260 | 3,212 | 3,885 |
2013-01-01 | 264 | 260 | 3,138 | 3,885 |
2012-12-01 | 272 | 259 | 3,153 | 3,153 |
2012-11-01 | 239 | 268 | 3,151 | 3,153 |
2012-10-01 | 259 | 282 | 3,252 | 3,153 |
2012-09-01 | 260 | 278 | 3,314 | 3,153 |
2012-08-01 | 265 | 275 | 3,432 | 3,153 |
2012-07-01 | 259 | 263 | 3,481 | 3,153 |
2012-06-01 | 328 | 266 | 3,557 | 3,153 |
2012-05-01 | 322 | 257 | 3,558 | 3,153 |
2012-04-01 | 232 | 260 | 3,568 | 3,153 |
2012-03-01 | 246 | 275 | 3,604 | 3,153 |
2012-02-01 | 192 | 297 | 3,725 | 3,153 |
2012-01-01 | 279 | 317 | 3,846 | 3,153 |
2011-12-01 | 271 | 327 | 3,985 | 3,985 |
2011-11-01 | 340 | 336 | 4,179 | 3,985 |
2011-10-01 | 321 | 335 | 4,281 | 3,985 |
2011-09-01 | 378 | 326 | 4,353 | 3,985 |
2011-08-01 | 314 | 324 | 4,402 | 3,985 |
2011-07-01 | 335 | 324 | 4,517 | 3,985 |
2011-06-01 | 329 | 338 | 4,644 | 3,985 |
2011-05-01 | 332 | 360 | 4,868 | 3,985 |
2011-04-01 | 267 | 379 | 5,092 | 3,985 |
2011-03-01 | 367 | 400 | 5,324 | 3,985 |
2011-02-01 | 313 | 410 | 5,471 | 3,985 |
2011-01-01 | 417 | 429 | 5,591 | 3,985 |
2010-12-01 | 466 | 436 | 5,667 | 5,667 |
2010-11-01 | 442 | 451 | NA | 5,667 |
2010-10-01 | 394 | 470 | NA | 5,667 |
2010-09-01 | 427 | 488 | NA | 5,667 |
2010-08-01 | 429 | 502 | NA | 5,667 |
2010-07-01 | 461 | 503 | NA | 5,667 |
2010-06-01 | 554 | 508 | NA | 5,667 |
2010-05-01 | 555 | NA | NA | 5,667 |
2010-04-01 | 500 | NA | NA | 5,667 |
2010-03-01 | 514 | NA | NA | 5,667 |
2010-02-01 | 432 | NA | NA | 5,667 |
2010-01-01 | 493 | NA | NA | 5,667 |
china_sme_imports_annual_plot
china_sme_imports_table
Date | Semiconductor Equipment Imports (Millions of $) |
---|---|
2021 | 44,447 |
2020 | 33,865 |
2019 | 28,317 |
2018 | 32,663 |
2017 | 20,821 |
2016 | 15,047 |
2015 | 13,284 |
2014 | 12,151 |
2013 | 9,122 |
2012 | 7,964 |
2011 | 18,436 |
2010 | 12,729 |
2009 | 5,229 |
2008 | 6,972 |
2007 | 6,723 |
2006 | 1,126 |
2005 | 729 |
2004 | 978 |
2003 | 479 |
2002 | 367 |
2001 | 253 |
2000 | 228 |
1999 | 89 |
1998 | 46 |
1997 | 35 |
1996 | 22 |
china_chip_imports_annual_plot
china_chip_imports_table
Date | Semiconductor Imports (Millions of $) |
---|---|
2021 | 433,727 |
2020 | 350,770 |
2019 | 306,397 |
2018 | 312,952 |
2017 | 261,161 |
2016 | 227,617 |
2015 | 230,657 |
2014 | 218,520 |
2013 | 232,078 |
2012 | 192,967 |
2011 | 171,142 |
2010 | 158,010 |
2009 | 120,751 |
2008 | 130,583 |
2007 | 128,664 |
2006 | 107,152 |
2005 | 82,202 |
2004 | 61,707 |
2003 | 41,834 |
2002 | 26,374 |
2001 | 16,998 |
2000 | 13,800 |
1999 | 7,924 |
1998 | 4,879 |
1997 | 3,642 |
1996 | 2,725 |
1995 | 2,366 |
1994 | 1,634 |
1993 | 1,165 |
1992 | 863 |